Hero image

GJHeducation's Shop

Average Rating4.50
(based on 904 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1093k+Views

1889k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Topic 8: The control of gene expression (AQA A-level Biology)
GJHeducationGJHeducation

Topic 8: The control of gene expression (AQA A-level Biology)

7 Resources
Each of the 7 lessons which are included in this bundle have been written to specifically cover the content as detailed in topic 8 of the AQA A-level Biology specification (The control of gene expression). The wide range of activities will maintain engagement whilst supporting the explanations of the biological knowledge to allow the students to build a deep understanding of this potentially difficult topic! Lessons which cover the following specification points are included in this bundle: Gene mutations and their effect on the structure of proteins Regulation of transcription by transcription factors The role of oestrogen in initiating transcription Determining the genome of simpler organisms to determine the proteome and its applications The development of DNA sequencing methods The production of DNA fragments through use of enzymes or a gene machine The role of the PCR to amplify DNA fragments The transfer of DNA into a host cell VNTRs The technique of genetic fingerprinting to analyse DNA fragments If you would like to see the quality of the lessons, download the producing DNA fragments lesson as this has been uploaded for free
Chemical control in mammals (Edexcel A-level Biology B)
GJHeducationGJHeducation

Chemical control in mammals (Edexcel A-level Biology B)

(0)
This lesson describes the principles of hormone production by endocrine glands and the two modes of action on target cells. The detailed PowerPoint and accompanying resources have been primarily designed to cover points 9.2 (i) & (ii) of the Edexcel A-level Biology B specification but can also be used as a revision tool to check on their knowledge of topics like biological molecules and transcription factors Students should have a base knowledge of the endocrine system from GCSE so this lesson has been planned to build on that knowledge and to add the detail needed at this level. The lesson begins by challenging this knowledge to check that they understand that endocrine glands secrete these hormones directly into the blood. Students will learn that most of the secreted hormones are peptide (or protein) hormones and a series of exam-style questions are used to challenge them on their recall of the structure of insulin as well as to apply their knowledge to questions about glucagon. Moving forwards, the students are reminded that hormones have target cells that have specific receptor sites on their membrane. The relationship between a peptide hormone as a first messenger and a second messenger on the inside of the cell is described to allow students to understand how the activation of cyclic AMP triggers a cascade of events on the inside of the cell. The rest of the lesson focuses on steroid hormones and specifically their ability to pass through the membrane of a cell and to bind to transcription factors, as exemplified by oestrogen.
Module 4.2.2: Classification and evolution (OCR A-level Biology A)
GJHeducationGJHeducation

Module 4.2.2: Classification and evolution (OCR A-level Biology A)

7 Resources
Classification and evolution is a topic that students can find difficult, which may be for a number of reasons that include a lack of engagement during lessons or because these topics are taught quickly as exams approach at the end of year 12. However, a clear understanding is critical, as assessment questions on the content of this module are common and are often worth a significant number of marks. In line with this, the planning of each of the 7 lessons in this bundle has focused on the inclusion of a wide range of tasks that will engage and motivate the students whilst covering the following points as detailed in module 4.2.2 of the OCR A-level Biology A specification: The biological classification of species The taxonomic hierarchy The binomial system of naming species and the advantages of such a system The features used to classify organisms into the five kingdoms The evidence that has led to new classification systems, such as the three domains of life The different types of variation Using standard deviation to measure the spread of a set of data Using the Student’s t-test to compare means of data values of two populations Using the Spearman’s rank correlation coefficient to consider the relationship of the data The different types of adaptations of organisms to their environment The mechanism by which natural selection can affect the characteristics of a population over time How evolution in some species has implications for human populations If you would like to sample the quality of the lessons included in this bundle, then download the following lessons as these have been uploaded for free: Taxonomic hierarchy and the binomial naming system Adaptations & natural selection
Farming and conservation (AQA A-level Biology)
GJHeducationGJHeducation

Farming and conservation (AQA A-level Biology)

(0)
This lesson explores how certain farming methods reduce biodiversity and considers the importance of a balance between conservation and farming. The PowerPoint and accompanying resources are the second in a series of 2 lessons which cover the detail in point 4.6 (biodiversity within a community) of the AQA A-level biology specification. The lesson begins by challenging the students to use the % change formula to calculate the predicted population in the UK by mid 2030. This increase to almost 70 million will lead into the recognition that farmers are under constant pressure to grow and provide enough food to feed this ever-growing population. A series of tasks and discussions will consider farming methods such as continuous monoculture and herbicides and insecticides which reduce biodiversity. This introduces conservation as active management to prevent the loss of biodiversity and several methods including the CSS and buffer strips are explored to encourage the students to think about the aims of these strategies. The other lesson covering specification point 4.6 is uploaded and named “biodiversity within a community”.
Topic B3.3: Maintaining internal environments (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic B3.3: Maintaining internal environments (OCR Gateway A GCSE Combined Science)

3 Resources
This bundle of 3 lessons covers all of the content in the sub-topic B3.3 (Maintaining internal environments) of the OCR Gateway A GCSE Combined Science specification. The topics covered within these lessons include: The importance of maintaining a constant internal environment in response to internal and external change Explain how insulin controls blood sugar levels Explain how glucagon controls blood sugar levels Compare type I and II diabetes All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
ATP (AQA A-level Biology)
GJHeducationGJHeducation

ATP (AQA A-level Biology)

(1)
Adenosine triphosphate is the universal energy currency and this lesson focuses on the structure of this nucleotide derivative. The PowerPoint has been designed to cover point 1.6 of the AQA A-level Biology specification and also explains how ATP must be hydrolysed to release energy and then re-synthesised during respiration and photosynthesis. As the previous sub-topic concerned the structure of DNA and RNA, the start of this lesson challenges the students on their knowledge of these polynucleotides so that they can recognise that this molecule consists of adenine, ribose and three phosphate groups. In order to release the stored energy, ATP must be broken down and students will be given time to discuss which reaction will be involved as well as the products of this reaction. Time is taken to describe how the hydrolysis of ATP can be coupled to energy-requiring reactions within cells and the examples of active transport and skeletal muscle contraction are used as these are covered in greater detail in topic 2 and 6. The final part of the lesson considers how ATP must be re-synthesised and students will learn that this occurs in the mitochondria and chloroplast during aerobic respiration and photosynthesis respectively.
Decomposers
GJHeducationGJHeducation

Decomposers

(0)
A fully-resourced lesson which looks at how decomposers are involved with the process of decay. The lesson includes an engaging and detailed lesson presentation (31 slides) and an associated differentiated worksheets. The lesson begins by displaying the definitions for decomposers and detritivores and challenging students to use their bingo cards to see if they can work out the words which are being described. Students will learn how these two types of organisms work together to break down matter. Moving forwards, a worked example is used to guide students through how to calculate the rate of decay from a range of different data types. Students will be challenged to act like a travel agent for decomposers to come up with the different conditions that they require. Finally, they have to bring all of the new-found knowledge together to answer a range of summary questions. These questions are differentiated two ways so that differing abilities can access the work. There are regular progress checks throughout the lesson to allow the students to check on their understanding. This lesson has been written for GCSE students (14 - 16 year olds in the UK)
Control of blood water potential (Edexcel A-level Biology B)
GJHeducationGJHeducation

Control of blood water potential (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes how the release of ADH from the pituitary gland controls mammalian plasma concentration. The engaging PowerPoint and accompanying resources have been designed to cover the detail included in point 9.9 (iv) of the Edexcel A-level Biology B specification and also includes details of the roles of the osmoreceptors in the hypothalamus. The principles of homeostasis and negative feedback were covered in an earlier lesson in topic 9, so this lesson acts to build on that knowledge and challenges them to apply their knowledge. A wide range of activities have been included in the lesson to maintain motivation and engagement whilst the understanding and prior knowledge checks will allow the students to assess their progress as well as challenge themselves to make links to other Biology topics. The lesson begins with a discussion about how the percentage of water in urine can and will change depending on the blood water potential. Students will quickly be introduced to osmoregulation and they will learn that the osmoreceptors and the osmoregulatory centre are found in the hypothalamus. A considerable amount of time is taken to study the cell signalling between the hypothalamus and the posterior pituitary gland by looking at the specialised neurones (neurosecretory cells). Links are made to the topics of neurones, nerve impulses and synapses and the students are challenged to recall the cell body, axon and vesicles. The main section of the lesson forms a detailed description of the body’s detection and response to a low blood water potential. The students are guided through this section as they are given 2 or 3 options for each stage and they have to use their knowledge to select the correct statement. The final task asks the students to write a detailed description for the opposite stimulus and this task is differentiated so those who need extra assistance can still access the work.
Spearman's rank correlation coefficient (OCR A-level Biology)
GJHeducationGJHeducation

Spearman's rank correlation coefficient (OCR A-level Biology)

(0)
This lesson describes how to use the Spearman’s rank correlation coefficient to consider the relationship between two sets of data. The PowerPoint and accompanying exam-style question are part of the final lesson in a series of 3 which have been designed to cover point 4.2.2 (f) of the OCR A-level Biology A specification. The previous two lessons described the different types of variation and explained how to calculate the standard deviation and how to use the Student’s t-test to compare two means. As with the previous lesson, a step by step guide is used to walk the students through the use of the formula to generate the rank coefficient and to determine whether there is a positive correlation, no correlation or a negative correlation. The students are also reminded of the null hypothesis and will be shown how to accept or reject this hypothesis and to determine significance. The students will work through an example with the class and then are given the opportunity to apply their newly-acquired knowledge to an exam-style question. The mark scheme is displayed on the PowerPoint so they can assess their understanding
AQA A-level Biology Topic 5 REVISION (Energy transfers in and between organisms)
GJHeducationGJHeducation

AQA A-level Biology Topic 5 REVISION (Energy transfers in and between organisms)

(0)
This is a fully-resourced REVISION lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content found within Topic 5 (Energy transfers in and between organisms) of the AQA A-level Biology specification. The sub-topics and specification points that are tested within the lesson include: The light dependent reaction including the production of ATP and reduced NADP and the photolysis of water The light-independent reaction to form triose phosphate and regenerate RuBP Identify environmental factors that limit the rate of photosynthesis Glycolysis as the first stage of both aerobic and anaerobic respiration The conversion of pyruvate to lactate The stages of aerobic respiration that occur in the mitochondria Losses of energy through food chains The roles of microorganisms in the nitrogen cycle The environmental issues of the use of fertilisers as seen with eutrophication Students will be engaged through the numerous quiz rounds such as “Can you DEPEND on your knowledge” and “Are you on the right PATH” whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual A-level terminal exams
Topic 12.2: Respiration (CIE International A-level Biology)
GJHeducationGJHeducation

Topic 12.2: Respiration (CIE International A-level Biology)

6 Resources
Each of the 6 lessons in this bundle are fully-resourced and have been designed to cover the content as detailed in topic 12.2 (Respiration) of the CIE International A-Level Biology specification. The specification points that are covered within these lessons include: The stages of aerobic respiration and their location in eukaryotic cells Glycolysis as the first stage of aerobic and anaerobic respiration Pyruvate is converted to acetyl CoA in the Link reaction The series of reactions that form the Krebs cycle The process and details of oxidative phosphorylation The relationship between structure and function in the mitochondrion Anaerobic respiration in mammalian tissue and yeast cells The oxygen debt The lessons have been written to include a wide range of activities and numerous understanding and prior knowledge checks so students can assess their progress against the current topic as well as be challenged to make links to other topics within this topic and earlier topics If you would like to see the quality of the lessons, download the Krebs cycle lesson which are free
Edexcel GCSE Science Topic B9 REVISION
GJHeducationGJHeducation

Edexcel GCSE Science Topic B9 REVISION

(1)
An engaging lesson presentation (57 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within Topic 9 (Ecosystems and material cycles) of the EDEXCEL GCSE Combined Science specification The topics that are tested within the lesson include: Levels of organisation Communities Interdependence in a community Determining the number of organisms in a given area Recycling materials Deforestation Global warming Students will be engaged through the numerous activities including quiz rounds like “Number CRAZY" whilst crucially being able to recognise those areas which need further attention
Topic B5: Health, disease and development of medicines (Edexcel GCSE Combined Science)
GJHeducationGJHeducation

Topic B5: Health, disease and development of medicines (Edexcel GCSE Combined Science)

7 Resources
This bundle of 7 lessons covers a lot of the content in Topic B5 (Health, disease and development of medicines) of the Edexcel GCSE Combined Science specification. The topics covered within these lessons include: Health The difference between communicable and non-communicable diseases Pathogens Common infections The spread of diseases and the prevention The spread of STIs The physical and chemical defences of the human body The use of antibiotics Developing new medicines Non-communicable diseases Treating cardiovascular disease All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Ectotherms (Edexcel A-level Biology B)
GJHeducationGJHeducation

Ectotherms (Edexcel A-level Biology B)

(0)
This lesson introduces the differences between ectotherms and endotherms and then describes the behavioural responses of an ecotherm. The PowerPoint and accompanying resource have been designed to cover specification point 9.9 (vi) of the Edexcel A-level Biology B specification which states that students should understand how ectotherms rely on the external environment for their temperature control. The main aim when designing the lesson was to support students in making sensible and accurate decisions when challenged to explain why these types of organisms have chosen to carry out a particular response. A wide range of animals are used so students are engaged in the content matter and are prepared for the unfamiliar situations that they will encounter in the terminal exam. Time is also taken to compare ectotherms against endotherms so that students can recognise the advantages and disadvantages of ectothermy when covered in the following lesson.
Endotherms (Edexcel A-level Biology B)
GJHeducationGJHeducation

Endotherms (Edexcel A-level Biology B)

(0)
This detailed lesson describes how an endotherm regulates its temperature through behaviour and also physiologically. The engaging PowerPoint and accompanying resources have been designed to cover specification point 9.9 (vii) of the Edexcel A-level Biology B specification and includes descriptions of the roles of the autonomic nervous system, thermoreceptors, hypothalamus and skin. A wide range of activities have been written into this lesson so that students remain motivated throughout and take a genuine interest in the content. Understanding checks allow the students to assess their progress whilst the prior knowledge checks on topics such as enzymes and denaturation demonstrate the importance of being able to make connections and links between topics from across the specification. In addition to these checks, quiz competitions like HAVE an EFFECT which is shown in the cover image are used to introduce key terms and values in a fun and memorable way. The lesson begins by introducing the key term, endotherm, and challenging students to use their prior knowledge and understanding of terminology to suggest what this reveals about an organism. Moving forwards, students will learn how the heat generated by metabolic reactions is used as a source of internal heat. The main part of the lesson focuses on thermoregulation in humans (mammals) and time is taken to focus on the key components, namely the sensory receptors, the thermoregulatory centre in the hypothalamus and the responses brought about by the skin. The important details of why the transfer of heat energy between the body and the environment actually leads to a decrease in temperature are explored and discussed at length to ensure understanding is complete. Students are challenged to write a detailed description of how the body detects and responds to a fall in body temperature and this task is differentiated for those students who need some extra assistance. The peripheral thermoreceptors are introduced and this leads into the final section of the lesson that considers behavioural responses in humans and other animals.
Energy, phosphorylation and ATP (CIE A-level Biology)
GJHeducationGJHeducation

Energy, phosphorylation and ATP (CIE A-level Biology)

(0)
This lesson outlines the need for energy in living organisms, and describes how ATP is formed by phosphorylation in respiration and photosynthesis. The engaging and detailed PowerPoint and accompanying resources have been primarily designed to cover points 12.1 (a, b, c & e) of the CIE A-level Biology specification but can be used as a revision of topics 1, 4 and 6 as the students knowledge of cell structure, membrane transport and ATP is constantly challenged. As this is the first lesson in topic 12 (respiration), it has been specifically planned to act as an introduction to this cellular reaction and provides important details about glycolysis, the Krebs cycle and oxidative phosphorylation that will support the students to make significant progress when these stages are covered during individual lessons. Photophosphorylation is also introduced so students are prepared for the light-dependent reaction of photosynthesis in topic 13. The main focus of the start of the lesson is the demonstration of the need for energy in a variety of reactions that occur in living organisms. Students met ATP in topics 1 and 6, so a spot the errors task is used to check on their recall of the structure and function of this molecule. This will act to remind them that the release of energy from the hydrolysis of ATP can be coupled to energy-driven reactions in the cell such as active transport and a series of exam-style questions are used to challenge them on their knowledge of this form of membrane transport. They will also see how energy is needed for protein synthesis and DNA replication and the maintenance of resting potential, before more questions challenge them to apply their knowledge of cell structure and transport to explain how it is needed during the events at a synapse. The rest of the lesson focuses on the production of ATP by substrate-level, oxidative and photophosphorylation and the students will learn when ATP is formed by each of these reactions and will see how the electron transport chain in the membranes in the mitochondria and chloroplast is involved
Topic B1:  Key concepts in Biology (Edexcel GCSE Combined Science)
GJHeducationGJHeducation

Topic B1: Key concepts in Biology (Edexcel GCSE Combined Science)

6 Resources
This bundle of 7 lessons covers the majority of the content in Topic B1 (Key concepts in Biology) of the Edexcel GCSE Combined Science specification. The topics covered within these lessons include: Animal cells Plant cells Bacterial cells Specialised cells Changes in microscopic technology Number, size and scale The relationship between quantitative units Enzyme properties and action Enzyme activity Osmosis Active transport All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Genetic engineering (OCR A-level Biology)
GJHeducationGJHeducation

Genetic engineering (OCR A-level Biology)

(0)
This extensive and fully-resourced lesson describes the principles and explains the techniques used in the production of recombinant DNA in genetic engineering. Both the engaging PowerPoint and accompanying resources have been written to cover points 6.1.3 (f) (i & ii) of the OCR A-level Biology A specification. The lesson begins with a definition of genetic engineering and recombinant DNA to allow students to begin to understand how this process involves the transfer of DNA fragments from one species to another. Links are made to the genetic code and transcription and translation mechanisms, which were met in module 2, in order to explain how the transferred gene can be translated in the transgenic organism. Moving forwards, the method involving reverse transcriptase and DNA polymerase is introduced and their knowledge of the structure of the polynucleotides and the roles of enzymes is challenged through questions and discussion points. Restriction enzymes are then introduced and time is taken to look at the structure of a restriction site as well as the production of sticky ends due to the staggered cut on the DNA. A series of exam-style questions with displayed mark schemes are used to allow the students to assess their current understanding. The second half of the lesson looks at the culture of transformed host cells as an in vivo method to amplify DNA fragments. Students will learn that bacterial cells are the most commonly transformed cells so the next task challenges their recall of the structures of these cells so that plasmid DNA can be examined from that point onwards. The following key steps are described and explained: • Remove and prepare the plasmid to act as a vector • Insert the DNA fragment into the vector • Transfer the recombinant plasmid into the host cell • Identify the cells which have taken up the recombinant plasmid • Allow the transformed host cells to replicate and express the novel gene Time is taken to explore the finer details of each step such as the addition of the promoter and terminator regions, use of the same restriction enzyme to cut the plasmid as was used to cut the gene and the different types of marker genes. As well as understanding and prior knowledge checks, quick quiz competitions are used throughout the lesson to introduce key terms such as cDNA and EcoR1 in a memorable way.
Maths in Edexcel A-level Biology REVISION
GJHeducationGJHeducation

Maths in Edexcel A-level Biology REVISION

(1)
The Pearson Edexcel A-level Biology A (Salters Nuffield) specification states that a minimum of 10% of the marks across the assessment papers will require the use of mathematical skills. This revision lesson has been designed to include a wide range of activities that challenge the students on these exact skills because success in the maths in biology questions can prove the difference between one grade and the next! Step-by-step guides are used to walk students through the application of a number of the formulae and then exam-style questions with clear mark schemes (which are included in the PowerPoint) will allow them to assess their progress. Other activities include differentiated tasks, group discussions and quick quiz competitions such as “FROM NUMBERS 2 LETTERS” and “YOU DO THE MATH”. The lesson has been written to cover as much of the mathematical requirements section of the specification as possible but the following have been given particular attention: Hardy-Weinberg equation Chi-squared test Calculating size Converting between quantitative units Standard deviation Estimating populations of sessile and motile species Percentages and percentage change Cardiac output Geometry Due to the detail and extensiveness of this lesson, it is estimated that it will take in excess of 2/3 hours of A-level teaching time to work through the activities and it can be used throughout the duration of the course
Maths in AQA GCSE Combined Science REVISION
GJHeducationGJHeducation

Maths in AQA GCSE Combined Science REVISION

(0)
This revision lesson has been designed to challenge the students on their use of a range of mathematical skills that could be assessed on the AQA GCSE Combined Science papers. The mathematical element of the AQA GCSE Combined Science course has increased significantly since the specification change and therefore success in those questions which involve the use of maths can prove to be the difference between one grade and another or possibly even more. The engaging PowerPoint and accompanying resources contain a wide range of activities that include exam-style questions with displayed mark schemes and explanations so that students can assess their progress. Other activities include differentiated tasks, class discussion points and quick quiz competitions such as “YOU DO THE MATH” and “FILL THE VOID”. The following mathematical skills (in a scientific context) are covered in this lesson: The use of Avogadro’s constant Rearranging the formula of an equation Calculating the amount in moles using mass and relative formula mass Calculating the relative formula mass for formulae with brackets Using the Periodic Table to calculate the number of sub-atomic particles in atoms Changes to electrons in ions Balancing chemical symbol equations Converting between units Calculating concentration in grams per dm cubed and volumes of solutions Calculating size using the magnification equation Using the mean to estimate the population of a sessile species Calculating percentages to prove the importance of biodiversity Calculating percentage change Calculating the acceleration from a velocity-time graph Recalling and applying the Physics equations Understanding prefixes that determine size Leaving answers to significant figures and using standard form Helpful hints and step-by-step guides are used throughout the lesson to support the students and some of the worksheets are differentiated two ways to provide extra assistance. Due to the detail of this lesson, it is estimated that it will take in excess of 3 hours of GCSE teaching time to cover the tasks and for this reason it can be used over a number of lessons as well as during different times of the year for revision.