Hero image

500Uploads

191k+Views

100k+Downloads

Market research on colour and mood
IETEducationIETEducation

Market research on colour and mood

(0)
Designing a questionnaire that informs product design Engineers play a key role in our everyday lives, often in ways we may not realise. Take the Watt Nightclub in Rotterdam as an example - engineers have designed a system that turns the energy created by dancing into power for the lighting. Even the colour of the lights was a consideration. In this activity, students will explore the relationship between colour and mood, and how it might impact the amount of electricity generated on a dance floor. This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within maths, science and design and technology (DT). Activity: The activity begins with a class discussion on whether colour can scientifically affect mood. Students will then learn about the role of questionnaires in research, including what makes a good questionnaire and what factors need to be considered when designing one. The class will watch the Dance Power film, which directly relates to this technology, and then split into groups to create their own questionnaires. These will be tested, evaluated, and refined before being conducted as homework. Students will process and present their findings, considering the reliability and accuracy of their evidence. They’ll discuss their results and the effectiveness of questionnaires as a research tool. The engineering context Market research is essential for engineers working in product design, providing valuable insights into consumer needs and preferences, enabling them to create innovative products that meet market demand and improve user satisfaction. Furthermore, by exploring how engineers can use colour to influence mood and hence energy production, students will gain an insight into the creativity and problem-solving involved in engineering. Suggested learning outcomes Through this activity, students will gain an understanding of the scientific method, specifically the design and implementation of a market research questionnaire. The class will develop the ability to generate scientific evidence to prove a hypothesis, in this case, the relationship between colour and mood. They will also consider what constitutes sufficient evidence for scientists to confirm a hypothesis. Download our activity sheets for free! The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs. Please do share your highlights with us @IETeducation.
Measuring boat speed - KS3 engineering
IETEducationIETEducation

Measuring boat speed - KS3 engineering

(0)
Time the journeys of different shaped boats and present the results This engaging engineering activity for KS3 considers displaying data from a practical investigation looking at the effect of streamlining a boats hull. Students will be asked to consider how this information can be represented effectively and use this to form conclusions. The reliability of their results will then be discussed. Activity Measuring boat speed Students will use the test rig, which can be found in the resources below, to test several different shaped boats. Students should measure the time taken for each boat to travel a set distance and record the results. Ask the students to discuss the fact that there is no measurable independent variable as it is very difficult to quantify the hull shape in terms of numbers. The students should ponder how they are going to represent these results graphically. If time is available, complete the investigation by repeating the tests. Discuss the sorts of errors that might occur in the collection of results. Learners will then plot their results into a bar graph. This could be used as part of an advertising campaign to sell the boat which could include design, bar chart, a brief conclusion and an explanation as to why the results are reliable. There is also an opportunity to use data logging equipment as well as light gates to further reduce errors in this engineering activity. As an extension, students could calculate speed (s=d/t), and the mean speed for each boat, taking into account the anomalous results. Students could consider what they could measure to draw a line graph and find the optimal hull design. If time is available, students could manufacture and test their own designs and include them within the analysis. This activity will take approximately 45 minutes. Tools/resources required The construction is a fairly simple activity and can be undertaken by your KS3 students (as an after school activity or by a technician) Boat objects Stop Watch Graph Paper Suggested learning outcomes By the end of this activity students will be able to explain when to use a bar chart and when they should be used to display categoric variables, they will be able to evaluate an experiment in terms of its reliability and precision and they will be able to apply scientific and mathematical understanding to an engineering context. All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Mobile phones and health
IETEducationIETEducation

Mobile phones and health

(0)
Investigate the potential effects of mobile phones on our health The ‘Time for a game’ scheme of work provides an electronics systems context for students to explore infrared technologies. Activity info, teachers’ notes and curriculum links An engaging activity in which students will investigate the potential effects to health of the use of mobile phones and their transmitters, which use radio waves and microwaves to transmit information. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Science behind the materials
IETEducationIETEducation

Science behind the materials

(1)
Explore the properties of solids, liquids and gases In this unit, students will develop their understanding of the properties of the three states of matter. They will have the opportunity to experiment with a range of different substances that do not fit neatly into the traditional states of matter model. Activity info, teachers’ notes and curriculum links An engaging activity where students will explore materials to develop an understanding of why they behave the way they do. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
How do animals use sound
IETEducationIETEducation

How do animals use sound

(0)
How sounds travel as waves of different frequencies and wavelengths From founding communications, such as the fire beacon, to being able to communicate with space, there is no denying that developments in communication have advanced at a rapid speed. This topic presents students with communications of the past, present and future, helping them to understand the principles that form the basis for these developments. This engaging STEM activity is aimed at KS3 students and deals with how animals use sounds and how sounds change in natural phenomena. This is so a student can understand how sound waves travel. The teacher will first distribute a copy of the ‘Animal Sounds’ handout, which can be downloaded below, to each student. Make sure students understand sound is a longitudinal wave of compressions and rarefactions of the material. Soundwaves follow the laws of wave behaviour, so they are a useful introduction to wave properties. This activity can be simplified (particularly for less able students) by creating a discussion on why different animals have different hearing ranges and their experience of phenomena such as the Doppler effect. Use the handout to discuss different sounds and what they might have learned in other lessons (e.g. music) about pitch, frequency, amplitude etc. As an extension students could produce a display from low to high frequency, showing where the sound ranges used by different animals lie. Students could consider how sounds outside the normal spectrum could be used to develop new products. For example, to make ‘silent’ devices to broadcast sound or data between two points. This is a quick and simple activity that will take approximately 15 minutes. The engineering context Sounds are vibrations travelling through materials. Many animals make sounds, either for communication or for location. Sound travels at different speeds in different materials. Generally, the denser the material, the faster the sound will travel. Sound is a longitudinal wave of compressions and rarefactions of the material (a rarefaction involves particles in the material being more spread out than usual). Sound waves follow the laws of wave behaviour, so they are a useful introduction to wave properties. Suggested learning outcomes By the end of this free resource students will know that sound is produced by objects vibrating and they will understand that sound is a longitudinal wave. They will also know about the range of frequencies that can be heard by humans and other animals and they will understand that sound travels at different speeds in different mediums. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please share your classroom learning highlights with us @IETeducation
What is Remote Surgery?
IETEducationIETEducation

What is Remote Surgery?

(0)
Learn about the robots used to perform remote surgery and the important role of electromagnetism Telemedicine is a new and fast-developing field in healthcare. Even 20 years ago the idea of a surgeon being able to operate a robot from hundreds of miles away in order to perform an operation seemed like science fiction. Today, this is not only possible but engineers, working with scientists and doctors, are now designing robotic systems which will be able to operate on patients with no human intervention at all. This activity is a quick, engaging introduction to a lesson using telemedicine and robotics as a context to explore electromagnetism and the link between technology and real-life science. Download the activity sheets for free! And please do share your classroom learning highlights with us @IETeducation
Balancing forces to design a boat
IETEducationIETEducation

Balancing forces to design a boat

(0)
Balancing forces to design a boat Using knowledge of forces in an engineering design context The balancing forces to build a boat activity tasks participants to apply scientific and mathematical understanding of forces (resistance, buoyancy and thrust) and Newton’s 3 laws of motion, in an engineering and design context. Relate speed to the streamlining in boat design and the shape of a boat’s hull. Consider the balanced and unbalanced forces the boat needs to withstand for maximum efficiency. This activity will demonstrate the principles of hydrodynamics, a similar set of principles to aerodynamics but involving water. This activity is designed to be taught through science and design and technology simultaneously, as a cross-curricular project. However, it can also be tackled independently from each subject. All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. Tools/resources required Projector/whiteboard The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales. Please do share your classroom learning highlights with us @IETeducation
Boat design challenge – KS3 engineering
IETEducationIETEducation

Boat design challenge – KS3 engineering

(0)
A fun engineering challenge for KS3 that will give students the opportunity to test boat hull designs in a test tank. Through this process, students will learn about the importance of applying relevant scientific and mathematical understanding when refining and developing an idea. This activity allows students to explore and develop their critical thinking and decision-making skills through a practical approach. The experiment ensures a ‘fair’ set of results is produced. The success of their overall boat hull design is directly dependent upon how well they apply their knowledge and understanding across the disciplines. In addition, key learning points needs to be reinforced through mathematics. The students could carry out initial research into different hull shapes used for various types of boat, and they should produce an image board of hulls with annotations to explain why the shape of the hull is appropriate for the particular type of boat. Types of boat hulls that could be researched include yachts, cruise ships, speed boats, fishing boats, container ships, and catamarans. This activity is designed to be taught through science and design and technology simultaneously, as a cross-curricular project and ideal for use in a STEM Club. However, it can also be tackled independently from each subject. Tools/resources required Test Tank (the construction is a fairly simple activity and can be undertaken by your KS3 students (as an after school activity) or by a technician) Vacuum Former High Impact Polystyrene/MDF or softwood blocks Optionally, modelling clay General Workshop Facilities Stopwatch Masses with a suitable holder The engineering context The focus of this activity is on the principle of hydrodynamics (a similar set of principles to aerodynamics but involving water). Suggested learning outcomes By the end of this activity students will be able to understand the importance of testing models and prototyping within the development of an idea, the need for streamlining in boat design and the principles of hydrodynamic design. Students will also be able to refine ideas in order to improve outcomes, they will be able to relate the shape of the hull to speed and the forces it needs to withstand maximum efficiency and they will be able to apply scientific and mathematical understanding to an engineering context. All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Prosthetics imitating the human body
IETEducationIETEducation

Prosthetics imitating the human body

(0)
Explore the body parts that can be replaced with prosthetic devices With the constant advancement in materials and prosthetic technology, this engineering activity for kids explores different materials and their suitability in the use of prosthetics for different body parts. Students will gather data on different materials to create a presentation that can be used to discuss new materials and the part that they play in the development of prosthetic devices. This free STEM resource is aimed at secondary school students. Students will be encouraged to think about how technology is changing our society. This lesson can be introduced by talking about skeletons. An anatomical skeleton can be used as a prop. Do you know what can be done when joints wear out in our skeletons? Students will be divided into teams and asked to come up with a list of body parts that can be replaced with prosthetic devices. Each team will explain their results to the rest of the class. Students can vote for the device they think is most likely to be made in the future. This activity will take roughly 15 minutes to complete. The engineering context The development of new materials with incredible properties is changing the way we live. From LCD TVs to super light airliners, these materials have quickly found their way into the modern technology around us. One area where modern materials have made a huge impact is in the development of prosthetic devices. Some of these devices are beginning to outperform ‘natural’ body parts. The resources within this, and the related activities, encourage students to investigate the properties of smart materials and carry out some data manipulation. Students will also explore the possible moral and ethical issues associated with people potentially choosing to replace healthy body parts with artificial prostheses because they offer higher performance. Suggested learning outcome By the end of this activity students will be able to explain what joints are and how they work. They will also be able to suggest links between modern technology and health. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Smart and modern materials
IETEducationIETEducation

Smart and modern materials

(0)
The new materials changing the way we live Discover and explore the new materials changing the way we live with our Smart and modern materials activity. The development of new materials with incredible properties are changing the way we live: from LCD TVs to super light airliners, these materials have quickly found their way into pretty much all of the modern technology around us. Activity info, teachers’ notes and curriculum links In this practical lesson, students conduct different tests on a selection of materials and identify each one from its properties. The tests include Eureka cans, electrical circuits, and other interesting investigations to test the density, hardness, magnetic and conductive properties of materials. This activity can be tailored to include tests that best investigate the properties of the materials you have available. Download the activity sheets for free! All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your classroom learning highlights with us @IETeducation Tools/resources required Resources required for class: Samples of 8 to10 different materials, with more than one sample of each if possible. All the samples should be able to fit in the available eureka cans Access to accurate weighing scales Safety glasses. Resources required per team: HB pencil, copper coin*, knife**, iron nail, small steel file Eureka can and an accurate measuring cylinder A magnet Powerpack/battery pack, 3 leads, light bulb and holder, crocodile clips A pad of sticky notes. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales. To watch the ‘Nature reinvented’ video, please visit IET Education website.
Water supply
IETEducationIETEducation

Water supply

(0)
Organise water filtration components to create a safe water supply system Activity info, teachers’ notes and curriculum links This activity challenges students to work in small teams to design a water supply system for a small town of 5,000 inhabitants. They have to work within a budget, including giving themselves a profit margin. The activity offers strong opportunities for cross-curricular work with Enterprise. The ‘Catalogue of Components’ handout includes a list of possible parts from which students can include in their design of their filtration system. Water is crucial to human life, but it can also be a killer. Drinking or cooking water contaminated with micro-organisms or chemicals is a leading cause of disease and death across the world. Poor facilities for the disposal of sewage and other waste water can quickly lead to the spread of dangerous diseases. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Smart sensor card game
IETEducationIETEducation

Smart sensor card game

(0)
Card game to consolidate understanding of electronic systems The role of smart sensors in our everyday lives is becoming increasingly fundamental. The Smart Sensor Communications topic focuses on what smart sensors are, how they are being used today and how they can be innovative in the future. Students are introduced to some recent developments in using smart sensors in control systems. Many of these uses are in health care and other high-tech applications. Activity info, teachers’ notes and curriculum links In this activity students learn the differences between smart sensors and ordinary sensors by studying some applications of smart sensors. They may also use a card game to consolidate their understanding of electronic systems. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. You can stream and download the related films by clicking on the appropriate link in the related resources section. And please do share your classroom learning highlights with us @IETeducation
Sound velocity
IETEducationIETEducation

Sound velocity

(1)
How fast does sound travel? What is sound velocity? Find out about transverse and longitudinal waves in our free, downloadable KS4 maths worksheet. From founding communications, such as the fire beacon, to being able to communicate with space, there is no denying that developments in communication have advanced at a rapid speed. This topic presents students with communications of the past, present and future, helping them to understand the principles that form the basis for these developments. Activity info, teachers’ notes and curriculum links This engaging activity allows students to investigate the velocity of sound. Two methods, a direct method and an ICT based method, are proposed. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the free activity sheet! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Daylight hours maths activity
IETEducationIETEducation

Daylight hours maths activity

(0)
In this fun maths activity, students will look at the way the length of the day changes over the year. They will use a data sheet to plot a graph, then interpret the data to work out the date of the longest and shortest days of the year in the United Kingdom. A free activity sheet can be downloaded. And please do share your poetry highlights with us @IETeducation! #SantaLovesSTEM
Design a jetpack
IETEducationIETEducation

Design a jetpack

(0)
Consider how a jetpack works and sketch an idea for a wearable jetpack In this activity learners will make use of the theme of football on the moon to design a jetpack that can be worn by either the players or referee during a moon football game. They will look at jetpack design and the different parts of a jetpack. They will then sketch an idea for a wearable jetpack for use during the game. This is one of a series of resources that are designed to allow learners to use the theme of football on the moon to develop their knowledge and skills in Science, Design & Technology and Engineering. This resource focusses on learners looking at jetpack aviation to design a jetpack that the players or referee can use during a game of football on the moon. The teacher will introduce the theme of playing football on the moon and the challenges that would be faced when doing this, before introducing and explaining how a jetpack works. Learners will then have time to go through the design brief and sketch their design ideas before reporting back to the class in an informal style or as part of a formal presentation. This activity can be simplified (particularly for less able students) by providing sentence starters for annotations/labelling of sketches and/or providing templates for learners to draw around, such as images of the referee and players. As an extension learners can make a life size model of the jetpack or design a spacesuit to be work by the players and/or referee. This activity is designed to take between 50-80 minutes. The engineering context Travelling and potentially living on the moon presents all sorts of challenges for engineers to overcome. For example, how will we breathe, how will we cope with much lower gravity, how will we play sports and keep fit? Suggested learning outcomes By the end of this free resource students will be able to design a wearable jetpack for a game of football on the Moon; know the different parts of a jetpack; and understand how jetpacks function and the technology needed to make them work. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Build a communication system for the moon
IETEducationIETEducation

Build a communication system for the moon

(0)
Learn about how electronic intercom circuits can help players communicate In this activity students will gain an understanding of how soundwaves travel and are received to allow them to be heard in the ear. Building on students pre-existing knowledge of circuits this activity focusses on how football players on the Moon could communicate to each other using electronics. Students then apply their skill to build an intercom circuit. This resource uses the theme of football on the Moon to allow learners to develop their knowledge and skills in design & technology, mathematics and science. In this activity learners will use the theme of football on the Moon to learn about how electronic intercom circuits can help players communicate. The teacher will introduce the activity and explain how sound waves allow us to hear. The teacher will then discuss the problems communicating on the Moon and explain why an electronic circuit is necessary. Learners will then have the opportunity to manufacture and test their own intercom. This activity can be simplified (particularly for less able students) by placing components onto the PCB/stripboard prior to soldering and/or using helping hands to hold PCB/stripboard in place. As an extension learners can research what methods could be used to make the intercom wireless. This activity is designed to take between 40-60 minutes. Tools/resources required Paper cups and string Sharp pencils and sticky tack Electronic components (see PPt list on slide 7) Soldering irons and stands Helping hands Wire strippers and cutters Lead free solder PCB making kit Tracing paper to print PCB mask Stripboard (see PPt slides 16-18) Stripboard track cutters The engineering context Engineers create and develop communication systems for numerous activities that take place in very different environments. For example, deep sea divers need to communicate underwater and armed forces have to communicate in all weather conditions. Suggested learning outcomes By the end of this free resource students will be able to understand how hearing works translating sound waves; understand how sound waves can travel through string by vibration and wire by electrical signal; and be able to build an intercom circuit. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Explore electrical resistance
IETEducationIETEducation

Explore electrical resistance

(0)
Testing the electrical resistivity of different materials In this activity learners will make use of the theme of electrical resistance to experiment with an electronic circuit. They will learn how to use an electronic multimeter and will then apply their skills to test the electrical resistivity of various materials. This activity could be used as a main lesson activity to teach about resistors and their use. It could also be used as part of a wider scheme of learning focussing on the selection of materials for different applications. This is one of a series of resources developed in association with the National Grid ESO, to allow learners to use the theme of electronics to develop their knowledge and skills in Design & Technology and Science. This resource focusses on practical experiments investigating the resistance of different materials. National Grid ESO ensure that Great Britain has the essential energy it needs by ensuring supply meets demand every second of every day. The teacher will explain what is meant by resistance and then explain the task to the learners through a series of practical hands-on activities. At the end of the session the teacher will get the learners back together to discuss their findings. This activity can be simplified (particularly for less able students) by setting up the multimeter in advance to the correct range before handing to learners. This activity is designed to take between 45-70 minutes. Tools/resources required Multimeters (digital or analogue) Assorted resistors, including 33kΩ Breadboards Crocodile clips Pencils and paper Glass of water Table salt Selection of materials (for the extension activity) The engineering context Many components, such as integrated circuits, can be damaged by high current. An understanding of resistance allows electrical engineers to select resistors to protect these components, ensuring the effective and continued operation of the electronic devices. Suggested learning outcomes By the end of this free resource students will be able to choose materials based on their resistivity; understand the basics of resistance; and be able to use electronic devices to measure resistance. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Test out Galileo’s gravity experiment
IETEducationIETEducation

Test out Galileo’s gravity experiment

(0)
Investigating velocity and acceleration down a slope In this fun STEM activity for kids, learners will discover how to write numbers in hieroglyphics. This free resource is aimed at primary school children and could be used as a main lesson activity, to teach learners about the works of the ancient Egyptians contributing to learning in design and technology, history, and mathematics or as an alternative method of reinforcing learning in basic numeracy. Additionally, this could be used to start a discussion on ancient Egypt or to introduce the concept of people using different languages. It could also be used in conjunction with other activities in this theme, ‘Making Papyrus’ and ‘Write like an Egyptian’. This is one of a set of resources designed to allow learners to use practical methods to support the delivery of key topics within design and technology, history, and mathematics. This resource is based on the use of Hieroglyphics for mathematical activities by the Ancient Egyptians. Using hieroglyphic symbols, learners will write down three numbers with values between 1,000 and 10,000,000. They will then swap their numbers with a peer. Can they tell each other the correct values of the numbers? A free presentation for teachers is provided. The presentation includes a slide showing how the ancient Egyptians represented fractions using hieroglyphics, which could be used for extension work. Additionally, learners could write and solve maths problems using hieroglyphics. This practical and engaging activity will test students’ maths abilities as it challenges children to think about the value of numbers, rather than just processing stated values. Tools/resources required A length of channel or guttering A tape measure A protractor A stopwatch The results table A pen or pencil An egg (plastic or boiled or solid) Weighing scales (for extension activity 2 only) The engineering context An understanding of numbers is vital for engineers to solve lots of interesting problems. For example, factories need to know the quantity of materials in order to make their products and farmers need to know how much food to produce. Suggested learning outcomes By the end of this exercise students will know what Hieroglyphics are, they will be able to use Hieroglyphics to represent numbers of values up to 10,000,000 and they will be able to carry out basic numeracy functions. Download the free Galileo’s gravity experiment activity sheets, including teacher notes, presentation and curriculum links along with a bonus wordsearch using words from the activity to enhance learning.
Build a popsicle stick catapult
IETEducationIETEducation

Build a popsicle stick catapult

(0)
Develop an understanding of levers and build a popsicle stick catapult from craft sticks with this free STEM lesson plan. This is an exciting and engaging way to learn about physics and engineering. With the right materials, build a simple yet effective catapult capable of launching chocolate eggs up into the air! This lesson plan is perfect for KS3 students and can be used as a fun one-off main activity to introduce levers. This is one of a set of resources designed to allow learners to use Easter themes to develop their knowledge and skills in Design & Technology, Mathematics and Science. This resource involves making a simple catapult which works as a lever to propel a chocolate or mini egg. This activity will take approximately 50 – 70 minutes to complete. Also included is a fun crossword using words from the activity to promote sticking learning. Tools/resources required Craft sticks (at least 7 per learner) Small elastic bands (at least 7 per learner, plus spares) A teaspoon (metal or plastic) Chocolate mini eggs (or similar) For the extension activity: Pencils (or similar, such as dowel rods) Elastic bands The engineering context Levers are one of the simplest machines and are used in many applications. These include pliers, scissors, brake pedals and wheels and axles. The principles of levers are also used in many applications when designing sports equipment, such as cricket bats, golf clubs and hockey sticks. Suggested learning outcomes After completing this Easter themed engineering resource students will be able to describe the three classes of lever and they will be able to make a structure. Download the free Build a popsicle stick catapult activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Design a sports wheelchair
IETEducationIETEducation

Design a sports wheelchair

(0)
Design a sports wheelchair for a Marathon race This activity is focused on the design of racing wheelchairs, but also develops understanding about the use of search engines. It considers the use of different search terms when using internet-based research using search engines and how this affects the outcomes of the search. The main activity involves designing a racing wheelchair considering key aspects to enhance its performance. The first London Marathon wheelchair race took place in 1983 in which 19 people took part with 17 completing the race. The winner, Gordon Perry, set a winning time of just over 3 hours and 20 minutes. With the advancements in engineering and technology since that date, wheelchair racing has come a long way, and in 2021, Marcel Hug won the London Marathon’s men’s wheelchair race setting a new course record with a time of just over 1 hour and 26 minutes! Activity info, teachers’ notes and curriculum links In this activity, learners will use the theme of the London Marathon to respond to a design context, investigate the context on the internet and design a wheelchair for sports use. This activity could be used as a main lesson activity to develop skills in designing. It could also be used to teach learners about how to search the internet effectively to gain the information that is most applicable to their requirements. All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your learning highlights and final creations with us on social media @IETeducation or send them via email to IETEducation@theiet.org to be featured in our online gallery. Tools/resources required Pens, pencils and drawing instruments Computer access for internet searching The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.