Hero image

SWiftScience's Shop

Average Rating4.26
(based on 750 reviews)

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.

620Uploads

768k+Views

450k+Downloads

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
NEW AQA GCSE Trilogy (2016) Biology - Infertility treatments
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Infertility treatments

(2)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Homeostasis' SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a think > pair > share task asking pupils to consider the different ways in which males, females or both could potentially find difficulty in conceiving a baby. Images are shown in order to prompt students to think about the anatomy of the male and female reproductive system. Answers will then be provided, pupils can check their ideas against those shown on the PowerPoint slide and red-pen their work. The next task is a fill-in-the-blank task on the role of FSH and LH during fertility treatments, pupils will need to consider the job of these two hormones in a healthy woman (covered during the menstrual cycle lesson) and then summarise how these hormones are used in fertility drugs. This work can be assessed using the answers provided once complete. The next part of the lesson focuses on how in vitro fertilisation works, pupils will be shown diagrams and descriptions of the stages involved with this process. Extra challenge questions are provided at the bottom of the worksheet should some students complete their work quickly. Pupils will then need to complete a worksheet o summarise these steps, once completed this work can be assessed using the mark schemes provided. Finally, students will need to consider the advantages and disadvantages of IVF. They will be given some information, one between two, they will need to use this information to summarise the pro's and con's of IVF. For the last task pupils will be given opinion cards in groups, they should read out the opinion cards and discuss which one's they agree with and why. They should then write a conclusion of their own opinions on IVF in their books, using as many valid scientific points as possible. The plenary task is for pupils to write a twitter message about what they have learnt that lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Chemistry - 'Chemical changes, Electrolysis and Energy Changes' lessons
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry - 'Chemical changes, Electrolysis and Energy Changes' lessons

10 Resources
This bundle of resources contains 8 whole lessons, along with all additional resources, which meet all learning outcomes within the ‘Chemical changes, Electrolysis and Energy Changes’ unit for the NEW AQA Chemistry Specification. Lessons include: The Reactivity Series Displacement Reactions Extracting Metals Making Salts Neutralisation & Strong/Weak Acids Electrolysis Aluminium Extraction Exothermic & Endothermic Reactions Reaction Profiles & Bond Energy Calculations Chemical cells, batteries and fuel cells The lessons contain a mix of differentiated activities, progress checks, practical investigations, exam questions and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE Trilogy (2016) Biology - Maintaining biodiversity
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Maintaining biodiversity

(7)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a definition on biodiversity, pupils are shown a pie chart of the numbers of different groups of organisms that have been identified to date. The first task is for pupils to consider which numbers correspond to which groups of organisms. Once pupils have discussed in pairs or groups the answers will be revealed, pupils can check their work against the answers provided. The next part of the lesson focuses on how and why scientists quantify biodiversity, pupils are firstly asked why it might be important to map out biodiversity - they can discuss in groups before the answer is revealed on the PowerPoint presentation. A map of the world depicting certain biodiversity hotspots is then shown to students and they are asked a couple of question about this map, pupils will be required to answer these questions in their books and then self-assess their work using the answers provided. Pupils are then asked to think > pair > share their ideas on why it is important to maintain biodiversity, in groups pupils may be given an A3 sheet for them to mind map their ideas onto. Once finished each group can feedback their ideas to the class and a larger mind map could be completed on the white board. Some of the key reasons for maintaining biodiversity cant then be detailed on the PowerPoint presentation for students to assess their work. The last task is for pupils to use information posters placed around the room to answer a set of questions, all on the topic of maintaining biodiversity. Once pupils have spent a good amount of time writing their answers down they should sit in their seats and use the mark scheme provided on the PowerPoint presentation to peer-assess their work. The plenary activity is for pupils to draw a feedback grid in their partners books and write down one positive comment, one negative comment and a question to test their knowledge. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology – New systems of classification
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology – New systems of classification

(3)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with an introduction to evolutionary trees, pupils will be shown how to interpret evolutionary trees and understand the common ancestry between species of organisms. Pupils will then be shown the difference between convergent and divergent evolution. The next part of the lesson will focus on the work of Woese et al, pupils will watch a video and try to answer questions about Woese and his work, this can be assessed using the answers which can be revealed once the video has been watched. Pupils can then watch a second video, using this video they will then try to complete profile cards for three domains as proposed by Woese – archaea, bacteria and eukaryotes. Pupils can again check their work against the answers provided in the PowerPoint slide. Pupils will then be given some information on Woese and his work, students will need to use this information along with what they have learnt so far in the lesson to complete a newspaper article on his work and infamous discovery. The next part of the lesson looks again at evolutionary trees, pupils are shown how to use an evolutionary tree to compare the relationships between organisms. Pupils will then need to complete an exam-style question on evolutionary trees, which can be self-assessed using the mark scheme provided. The plenary task is for pupils to come up with questions for a set of answers. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Genetic Engineering
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Genetic Engineering

(3)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Inheritance, variation and evolution' SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a think > share > pair task for pupils to consider the definition of genetic engineering, once pupils have had a discussion about this the answer can be revealed. Pupils will then be shown a video about the steps involved with genetic engineering, pupils will need to answer questions whilst watching the video. Pupils can then check their work against the answers provided and correct anything they perhaps didn't get during the video. Pupils will then be given a diagram of the genetic engineering process, specifically using the example of the human gene for insulin being inserted into a bacterium. Pupils will need to copy the diagram into their books and choose the correct statements, from a jumbled list, to go with the correct steps. Pupils can self or peer-assess their work once this task is complete. The next part of the lesson is on the genetic modification of crops, pupils will firstly watch some videos which outlines various viewpoints of the growth and consumption of GM crops. Pupils should watch the videos and note down any benefits or problems they identify, a class discussion can follow this to ensure all students got the important points. The benefits of GM crops will then be highlighted to students with the aim to be used to feed the world's starving nations. After pupils have read through this they will be asked to come up statements that a collection of people might make about GM crops - an organic farmer, a charity worker for a world hunger organisation, a GCSE student and a GM scientist. The final activity is for pupils to complete the exam-style question on genetic engineering, once completed pupils can assess their work using the mark scheme provided. The plenary is for pupils to pick a task - either write a summary sentences including a list of key words or identify the questions for a list of answers. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Biology (2016) - The human kidney HT
SWiftScienceSWiftScience

NEW AQA GCSE Biology (2016) - The human kidney HT

(4)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Homeostasis' SoW and for higher tier students. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with an outline on the role of the kidney, pupils are asked recap questions on how water enters and leaves the body, which can be self-assessed using the answers provided. The next slide outlines the main functions of the kidney in controlling water and mineral ion balance, pupils will then need to answer questions on this information. This work can be self-assessed using the answers provided on the following slide. Pupils will then watch a video on how the kidneys work, pupils will need to answer questions whilst watching the video. Once the video is finished they can assess their own work using the answers provided. To summarise what the students have learnt so far they will then copy and complete sentences, filling in the blanks with the key words provided. Again, the answers for this task are provided for pupils to assess their work. The next part of the lesson focuses specifically on the release of ADH from the pituitary gland and it's control over the water balance in the body. Pupils are shown a flow diagram of the responses when water levels either rise too high or fall too low in the body. Pupils will then be given a list of statements and will be asked to recreate their own flow diagram to demonstrate this process. This work can then be assessed using the answers provided. The plenary task is for pupils to come up with three summary sentences about what they have learnt this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Biology - 'Inheritance, Variation & Evolution' lessons
SWiftScienceSWiftScience

NEW AQA GCSE Biology - 'Inheritance, Variation & Evolution' lessons

16 Resources
This bundle of resources contains 12 lessons which meet all learning outcomes within the 'Inheritance, Variation & Evolution’ unit for the NEW AQA Biology Specification. Lessons include: Types of reproduction Variation Meiosis Selective Breeding Genetic Engineering Inherited Disorders Gene Expression & Inheritance DNA & Protein Synthesis Ethics of gene technologies Evolution by natural selection Evidence of evolution Evolution of antibiotic resistant bacteria Evolution & Extinction The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE (2016) Chemistry  - Chemical cells, batteries and fuel cells
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Chemical cells, batteries and fuel cells

(2)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical changes and electrolysis’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a diagram to show how chemical cells/batteries work by relying upon the differing reactivity of metals. Students will then watch a video and will need to answer a set of questions using the information provided in the video, students can then self-assess their work using the mark scheme provided in the PowerPoint. Students will now need to complete an investigation into the potential difference produced by different chemical cells by following the instructions on the practical sheet provided. Pupils will need to record the results of their investigation and write a conclusion on the practical worksheet. The next task is a ‘Quick Check’ to assess students understanding of what they have learnt so far this lesson, pupils will need to complete a set of questions and they can then self-assess their work using the answers provided in the PowerPoint. The last part of the lesson will focus on fuel cells, students will watch a video and using the information provided they will need to ask a set of questions. The answers to these questions are included in the PowerPoint, so students can check their work once this task is complete. Finally, students will be given a set of information on hydrogen fuel cells which they can read in pairs. Using this information pupils will need to produce a table to sum the advantages and disadvantages of using hydrogen fuel cells as an energy source. Students can then check their work against answers provided in the PowerPoint. The plenary task is for pupils to summarise what they have learnt this lesson in three sentences, using key words from the list provided. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - The history of genetics: Mendel HT
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - The history of genetics: Mendel HT

(1)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW, specifically for the higher-tier, biology only specification. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with an introduction to the work of Gregor Mendel, students will firstly watch a video and answer questions using the information provided. Once finished with this introductory task pupils can self-assess their work against the marking criteria. The next task focuses on genetic diagrams drawn to represent the crosses Gregor Mendel carried out during his investigations. Pupils will be prompted to draw the genetic diagrams themselves to show the genotypes of offspring of the F1 and F2 generation of pea plants in the example given. There is a prompt which you can reveal for those students of a lower ability. Once this task is complete pupils can check their work against the answers which are provided. Now there is a quick check mid-plenary for pupils to consolidate knowledge of what they have learnt so far, a set of questions is provided and the mark scheme for pupils to check their work against. The next part of the lesson focuses on why Mendel’s important work was not wholly recognised within his lifetime, pupils can read an extract of information and use this to answer questions. Once complete pupils can self-assess their work using the answers provided. The final part of the lesson is looking at how Mendel’s work was imperative to the development of the double-helix model of DNA and subsequent genetic research and discoveries. Pupils will need to read a page of information, in pairs, and answer questions provided on the PowerPoint slide. For those pupils of a lower ability it may be easier to tag read the information and answer questions in groups. Once completed pupils can check their work against the success criteria provided. The final task is for pupils to answer an exam question on this topic, pupils can complete in their books (at the back of their books for an extra challenge) and assess their work using the mark scheme once complete. The plenary task is for pupils to come up with a questions that they would like to ask Mendel about his work. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Cloning HT
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Cloning HT

(2)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins by introducing pupils to the definition of a clone and outlining the different cloning techniques they will learn about in this lesson. Pupils will firstly learn about two techniques used to clone plants - cuttings and tissue culture. Pupils will learn about these two techniques and will need to complete the correct descriptions on a diagram demonstrating the steps involved with taking plant cuttings. Once this is complete the work can be self-assessed. The second part of the lesson focuses on adult cloning. Firstly pupils are talked through the process of embryo transplants using a diagram. Pupils will be provided with a worksheet with a flow diagram of the embryo transplant process but missing statements to describe the process. Pupils will need to choose the correct statements to go in these boxes, this work can be assessed using the answers provided once complete. Adult cell cloning is the other example of an animal cloning technique pupils will need to describe. Firstly, pupils will watch a video about Dolly the sheep and the adult cell cloning process, using this video they will need to answer some questions. This can be checked against the answers which will be provided. For the next activity pupils will be provided with the diagram of the sequence of events involved in the adult cell cloning process, pupils will be required to fill in the blanks to complete the descriptions of the steps involved. Once completed pupils can use the mark scheme to assess their work. The final activity focuses on the risks and benefits of adult cell cloning, pupils will be given a list of opinions about this cloning technique and they will need sort them into advantages/disadvantages in their books. The plenary activity is for pupils to pick a task: either write a twitter message about what they have learnt this lesson or unscramble anagrams to spell out 5 key words from the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Biology - 'Inheritance, variation & evolution' HT lessons
SWiftScienceSWiftScience

NEW AQA GCSE Biology - 'Inheritance, variation & evolution' HT lessons

4 Resources
This bundle of resources contains 4 whole lessons which meet all learning outcomes for the higher tier, separate science modules within the ‘Inheritance, variation & ecology’ unit for the NEW AQA Biology Specification. Lessons included: Cloning Mendel Theories of evolution Evolution & Speciation The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA Trilogy GCSE (2016) Biology - Photosynthesis
SWiftScienceSWiftScience

NEW AQA Trilogy GCSE (2016) Biology - Photosynthesis

(3)
This is a lesson designed to meet specification points for the new AQA Trilogy GCSE Biology ‘Bioenergetics’ scheme of work. The lesson begins by pupils being introduced to the term ‘photosynthesis’ and then being asked to consider the raw materials that plants need in order for photosynthesis to occur. Pupils are then given three minutes to write down everything they have learnt about photosynthesis so far, with an extension task to write the word equation for the reaction. In the next part of the lesson pupils are introduced to the word equations and are challenged to write a balanced symbol equation for this reaction. Mid-lesson plenary involves a set of exam-questions (total marks = 9 marks) which they can complete in silence and then peer or self-assess using the mark scheme provided. Pupils are then introduced to the concept of endothermic and exothermic reactions, they are given the definition for an endothermic reaction and are then asked to ‘think, pair, share’ with a partner about what an exothermic reaction might be and whether photosynthesis is endothermic or exothermic. After 5 minutes, pupils are given the answers and they can mark their work. The final activity is for pupils to watch a video on the scientific investigation conducted by Van Helmont, pupils watch the video and answer questions on a worksheet which can then be self or peer-assessed using red pens. Pupils can choose their plenary activity - either writing quiz questions on the topic of the lesson or summarising what they learnt by writing a twitter message along with #keywords. All resources are included in the PowerPoint presentation, thank you for purchasing :)
NEW AQA Trilogy GCSE (2016) Biology - Aerobic Respiration
SWiftScienceSWiftScience

NEW AQA Trilogy GCSE (2016) Biology - Aerobic Respiration

(2)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Bioenergetics' SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with an introduction of the process of aerobic respiration including the word equations that pupils will need to learn. Next is a video, pupils will need to answer questions whilst watching the video, once it is finished they can self-assess their work using the mark scheme provided. Pupils are then introduced to the idea that aerobic respiration is exothermic and look specifically at the ultra-structure of the cell and which parts are important for respiration, this activity is a match up activity that pupils can complete and then mark. A mid-plenary is a true or false task and the final activity is a levelled worksheet pupils will complete using information cards on how animal and plant organisms use the energy released by respiration. Once finished they can self-assess using the mark scheme on the PowerPoint slides. Pupils have a choice of two activities to complete for their plenary - either an anagram challenge or a summary sentence using a list of key words. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Energy Stores & Transfers
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Energy Stores & Transfers

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.2 unit on ‘Energy. The lesson begins with an introduction to the law of the conservation of energy, students are told that energy cannot be created or destroyed but it can be stored and transferred. Next, students are introduced to the five main energy stores, students are asked to match the correct names to the photos displayed. This task can then be self-assessed using the mark scheme provided. Next, students are introduced to the ways in which energy can be transferred - via light waves, sound waves and electricity. They will be shown an energy transfer diagram, depicting the energy transfers which take place within a torch. Once students have seen the complete diagram, they will then have a go at completing it themselves, using the statements provided. This task can the be marked against the mark scheme provided. Students will then complete two further energy diagrams to display the energy transfers taking place within a candle and TV. The answers to this task are also included in the PowerPoint presentation so students can self-assess their work using the mark scheme provided. Lastly, students will complete an investigation into the height a ball bounces back up to after it has been dropped from a height. Students will work in groups of three, following the instructions provided on the PowerPoint to complete the results table provided. Students will then need to answer a set of questions using the data they collected from the investigation. This can be self-assessed using the mark scheme provided. The plenary task requires students to complete one of the sentence starters, to summarise what they have learned this lesson. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Biology (2016) - Controlling body temperature HT
SWiftScienceSWiftScience

NEW AQA GCSE Biology (2016) - Controlling body temperature HT

(2)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Homeostasis’ SoW and for higher tier students. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a recap of normal body temperature and what happens if the temperature falls above or below this temperature. Pupils will also be introduced to the role of the thermoregulatory centre and thermoregulatory receptors in monitoring body temperature. Pupils are then asked to discuss and produce a list of mechanisms that helps the body to cool down on a hot day. This leads onto describe the role of sweating and vasodilation in cooling the body down. Pupils are then asked to consider what they think might happen if the body becomes too cold and again produce a list of mechanisms which might help warm it up. Using the PowerPoint slides the mechanisms of shivering and vasoconstriction will be demonstrated to pupils. Using this information pupils will need to copy and complete a flow diagram to demonstrate the role of thermoregulatory centre in controlling body temperature, this can be self-assessed once it has been completed. Pupils will now copy and label a diagram of the skin to show the position of sweat glands, hair, hair muscle and blood vessels, this can be marked once it has been completed. The next activity is for pupils to sort statements into two columns - one describing what happens when the body is too hot and one for when the body is too cold. Once completed the mark scheme can be used by pupils to self or peer-assess their work. The final activity is a 6-mark exam-style question on this topic, pupils should try and complete this in silence and at the back of their books to really test their knowledge of this topic. Once complete the mark scheme can be used for pupils to mark their own work. The plenary task is for pupils to pick a summary question of their choice from the two provided. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Instrumental Analysis
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Instrumental Analysis

(0)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical Analysis’ SoW. The lesson begins with a ‘Think > Pair > Share’ task where students are required to discuss sectors which must reply upon efficient and effective instrumental methods of chemical analysis. After a short class discussion, the teacher can discuss the importance of instrumental analysis for environmental and health care sectors. Students will now be shown the difference between qualitative and quantitative methods of chemical analysis. They will then be given a set of statements, students will need to sort these statements into either advantages of disadvantages of instrumental methods of chemical analysis vs. traditional methods. Pupils will need to self-assess their work using the answers provided in the PowerPoint. Next, students will watch a video on flame emission spectroscopy and will need to use information provided in the PowerPoint to answer a set of questions. This work can be self-assessed using the answers provided. Following this, students will be provided with a set of information about this process, they will need to use this information to answer a set of questions. Their answers to these questions can be self-assessed using the mark scheme provided. Lastly, pupils will be shown a diagram showing the results of flame emission spectroscopy tests for different metals. The plenary task requires pupils to write a Whatsapp message about what they have learned during the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Biology - 'Organisation' lessons
SWiftScienceSWiftScience

NEW AQA GCSE Biology - 'Organisation' lessons

14 Resources
This bundle of resources contains 12 lessons which meet all learning outcomes within the ‘Organisation’ unit for the NEW AQA Biology Specification. 1. Principles of organisation 2. Enzymes 3. The human digestive system 4. Digestive enzymes 5. The heart 6. The blood 7. Blood vessels 8. Helping the heart 9. Breathing & gas exchange 10. Plant tissues & organs 11. Transport in plants 12. Evaporation & transpiration The lessons contain a mix of differentiated activities, mid-lesson progress checks, extra challenge tasks, 6-mark exam questions and more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE (2016) Chemistry - Reduce, reuse, recycle
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Reduce, reuse, recycle

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the 'Earth’s Resources’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The first part of the lesson focuses on the problems of metal extraction, particularly to the environment. Students will firstly brainstorm their ideas of how metal extraction can cause problems, then some examples are revealed using the PowerPoint presentation and the need for recycling is also explained. Students will then need to complete a progress check, a set of questions to assess their knowledge of what they have learned this lesson. The answers to which are included in the PowerPoint presentations so students can self-assess or peer-assess work. Pupils will now focus on the extraction and recycling of three metals: aluminium, copper and iron. They will firstly be given some information sheets on these three metals and using these they will need to answer a 6-mark exam question which requires pupils to give a use for each metal and outline reasons why they should be recycled by listing both economic and environmental reasons. This task can then be peer or self-assessed using the comprehensive mark scheme provided. Pupils will now watch a video which outlines limits to recycling, pupils will need to answer a set of questions whilst watching the video. This work can then be self-assessed using the mark scheme provided. The last task is a word search, pupils need to find a list of key words in the word search and for each word they find they need to write a sentence which links that word to the extraction of metal from it’s ore. The plenary activity is for pupil to spend five minutes thinking about what they have learned in the lesson - what they have understood and what they would like to spend more time on. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please email me at swift.education.uk@gmail.com and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Evolution by natural selection
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Evolution by natural selection

(2)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a focus on mutations and how they contribute towards genetic variation within a population. Pupils can tag read some information provided in the board and then answer questions in their books, this work can be self-assessed against the mark scheme provided. The next activity involves pupils watching a video about natural selection, using the video they will need to answer questions which again can be self-assessed using the success criteria provided. Pupils will then be shown a slide which demonstrates, with the example of giraffes, how natural selection can ensue within a population of organisms over time. Pupils will then be given a cartoon strip to show how natural selection occurs, they can draw diagrams of any organism they wish to choose and will need to fill in the blanks for the captions below each stage in the process. This work can be self-assessed one complete. The next task pupils need to complete is a card sort describing the steps involved with how head lice become resistant to head lice shampoos, pupils can discuss in pairs to complete this task. Once complete the answers will be revealed, for higher ability pupils they can draw this as a flow diagram in their books as an extension. The final activity is a past-paper question, pupils can complete this in their books. For higher ability pupils you could demand silence and ask for it to be completed at the back of their books as a revision activity, for lower ability pupils you may allow discussion with a partner. The plenary activity involves pupils being provided with the answers to 5 questions, pupils need to think of 5 questions which may link to these answers. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA Trilogy GCSE Biology (2016) - Principles of Homeostasis
SWiftScienceSWiftScience

NEW AQA Trilogy GCSE Biology (2016) - Principles of Homeostasis

(4)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Homeostasis’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a definition of homeostasis and pupils will then need to discuss in pairs the conditions that they think need to be controlled by the body. This leads on to revealing these factors and looking specifically at the way in which water can be lost and gained by the body. Pupils the complete a couple of questions on the topic. Next is a focus on temperature control in the body, pupils need to consider what might happen if the temperature rises too high or falls too low and come up with ideas about how this might affect the body. Having already covered enzymes hopefully they might have some clue about what might happen. You can reveal the answer and pupils then need to complete a small worksheet to summarise these ideas. Next pupils are challenged to think about what parts of our body control our reactions, pupils are asked to complete a challenge which gets them thinking about coordination and they will then write down any organs they think were involved with this process. The nervous and endocrine system are then introduced, pupils will need to copy and complete summary sentences to describe the main structures and functions of these two systems in controlling the body. Pupils will then complete an exam question on the differences between nervous and endocrine control, the mark scheme is provided for pupils to mark their work. Finally pupils look at the role of negative feedback in the body and how this works with the example of temperature control. Pupils will need to sketch a simple graph into their books and use labels provided to demonstrate how this process occurs. Again, the finished diagram is included so pupils can assess their own work. A plenary activity is to complete an exit card listing key words, facts and to pose a question about the work covered in the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)