Hero image

Dan Walker's Shop

Average Rating4.80
(based on 2860 reviews)

I'm a secondary school maths teacher with a passion for creating high quality resources. All of my complete lesson resources come as single powerpoint files, so everything you need is in one place. Slides have a clean, unfussy layout and I'm not big on plastering learning objectives or acronyms everywhere. My aim is to incorporate interesting, purposeful activities that really make pupils think. I have a website coming soon!

223Uploads

1515k+Views

1561k+Downloads

I'm a secondary school maths teacher with a passion for creating high quality resources. All of my complete lesson resources come as single powerpoint files, so everything you need is in one place. Slides have a clean, unfussy layout and I'm not big on plastering learning objectives or acronyms everywhere. My aim is to incorporate interesting, purposeful activities that really make pupils think. I have a website coming soon!
Lines pictionary
danwalkerdanwalker

Lines pictionary

(0)
A game to get pupils using key words and help them develop a greater appreciation of the important features of a diagram. I’ve created a series of simple images using two, three or four lines. Pupils cut these into individual cards, then take it in turns to pick one and describe the image to the other. The other sketches what they think the image looks like. They then reveal and discuss any differences. The game could be extended by pupils designing their own images, or used on other topic, eg circle theorems. As a bonus, they can finish off with a bit of route inspection! If anyone has a more catchy name for the game I’m open to suggestions!
Perimeter investigation
danwalkerdanwalker

Perimeter investigation

(0)
A complete lesson or maybe two, where pupils consider how perimeter varies for rectilinear shapes. Sounds simple but it involves pupils investigating and using algebra to form and solve equations. Designed to follow on from another lesson I’ve put on the TES website about perimeter, although it works as a stand alone lesson too. Activities included: Starter: A quick task to get pupils thinking about when perimeter varies and when it doesn’t. Main: Three similar-but-different scenarios for pupils to investigate, by drawing different shapes that fulfil given criteria, before trying to spot patterns and generalise about perimeter. One of these scenarios is a ‘non-example’, in that the exact perimeter cannot be found. These scenarios are each formalised using some basic algebra, to model how to approach the next task. I’ve also attached a Geometer’s Sketchpad file which has these questions shown dynamically. If you don’t have GSP, no problem, as I have endeavoured to show the same information within the powerpoint. A set of related perimeter questions, requiring pupils to form simple equations to answer. Includes a few more non-examples, to help deepen pupils’ understanding of the algebra involved. Plenary: A prompt for pupils to reflect on the subtly different ways algebra has been used within the lesson. Printable worksheets and answers included. Please review if you buy as any feedback is appreciated!
Solving equations using inverse operations
danwalkerdanwalker

Solving equations using inverse operations

(0)
A complete lesson on solving one step equations using inverse operations. Does include some decimals, as I wanted to give a more complete example set and make it hard for pupils to just use trial and error to find solutions. As such, I would let pupils use calculators. Activities included: Starter: A short task where pupils match up simple one step ‘flll the blank’ statements, flow charts and equations. Then a prompt for them to discuss the solutions to these equations. I would expect them to at least know that to solve means finding numbers that make the equation true, and even if they have no prior knowledge of solving methods, they could verify that a given number was a solution to an equation. See my other resources for a lesson on introducing equations. Main: Some diagnostic questions to be used as mini whiteboard questions, where pupils turn one step equations into flow charts. Examples and a set of questions on using inverse operations to reverse a flowchart and solve its corresponding equation. A more open ended task of pupils creating their own questions, plus an extension task of creating equations with the largest possible answer, given certain criteria. Plenary: A prompt to discuss an example of an equation that can’t be solved using inverse operations. Printable worksheets and answers included. Please review if you buy as any feedback is appreciated!
Introducing equations
danwalkerdanwalker

Introducing equations

(0)
A complete lesson designed to introduce the concept of an equation. Touches on different equation types but doesn’t go into any solving methods. Instead, pupils use substitution to verify that numbers satisfy equations, and are therefore solutions. As such, the lesson does require pupils to be able to substitute into simple expressions. Activities included: Starter: A set of questions to check that pupils can evaluate expressions Main: Examples of ‘fill the blank’ statements represented as equations, and a definition of the words solve and solution. Examples and a worksheet on the theme of checking if solutions to equations are correct, by substituting. A few slides showing some variations of equations using carefully selected examples, including an equation with no solutions, an equation with infinite solutions, simultaneous equations and an identity. A sometimes, always never activity inspired by a similar one form the standards unit (but simplified so that no solving techniques are required). I’d use the pupils’ work on this last task as a basis for a plenary, possibly pupils discussing each other’s work. Printable worksheets and answers included. Please review if you buy as any feedback is appreciated!
Number pyramids investigation 3
danwalkerdanwalker

Number pyramids investigation 3

(0)
An open-ended lesson on number pyramids, with the potential for pupils to practice addition and subtraction with integers, decimals, negatives and fractions, form and solve linear equations in two unknowns and create conjectures and proofs. I used this lesson for an interview and got the job, so it must be a good one! The entire lesson is built around the prompt I’ve uploaded as the cover slide. I have provided detailed answers for some of the responses that pupils could give, so you can get a clear idea of how the investigation might progress. I would spend the lesson responding to pupils’ work and questions, and probably get pupils to make posters of their findings or discuss their work with other pupils. Suitable for a range of abilities. Please review if you buy as any feedback is appreciated!
Number pyramids investigation 1
danwalkerdanwalker

Number pyramids investigation 1

(0)
A complete lesson on number pyramids, with an emphasis on pupils forming and solving linear equations. An excellent way of getting pupils to consolidate methods for solving in an unfamiliar setting, and for them to think mathematically about what they are doing. Activities included: Starter: Slides to introduce how number pyramids work, followed by a simple worksheet to check pupils understand (see cover slide) Main: A prompt to a harder question for pupils to try. They will probably use trial and improvement and this will lead nicely to showing the merits of a direct algebraic method of obtaining an answer. A second, very similar question for pupils to try. The numbers have simply swapped positions, so there is some value in getting pupils to predict how this will impact the answer. A prompt for pupils to investigate further for themselves, along with a few suggested further lines of inquiry. There are lots of ways the task could be extended, but my intention is that this particular lesson would probably focus more on pupils looking at combinations by rearranging a set of chosen numbers and thinking about what will happen as they do this. I have made two other number pyramid lessons with slightly different emphases. Plenary: A prompt to a similar looking question that creates an entirely different solution, to get pupils thinking about different types of equation. Please review if you buy as any feedback is appreciated!
Number pyramids investigation 2
danwalkerdanwalker

Number pyramids investigation 2

(0)
A complete lesson on number pyramids, with an emphasis on pupils forming and solving linear equations. An excellent way of getting pupils to think about equations in an unfamiliar setting, and to create their own questions and conjectures. Activities included: Starter: A mini-investigation on three-tier number pyramids, to set the scene. One combination is best dealt with using a linear equation, and sets pupils up to access the more challenging task to come. Main: A prompt for pupils to consider four-tier number pyramids. Although this task has the potential to be extended in different ways, I have provided an initial focus and provided some responses that pupils could give, so you can get a clear idea of how the investigation might progress. I would spend the rest of the lesson responding to pupils’ work and questions, and probably get pupils to make posters of their findings or discuss their work with other pupils. Please review if you buy as any feedback is appreciated!
Triangle area activity
danwalkerdanwalker

Triangle area activity

(1)
A challenging activity on the theme of triangle area, suitable for year 11 revision. The initial questions require a knowledge of basic triangle area, Pythagoras’ theorem, SOHCAHTOA, the sine rule and 1/2absinC so a good, challenging revision task. The questions have been designed with a ‘minimally diferent’ element, to draw pupils attention to how subtle changes can have significant implications for selecting methods. There are some follow-up questions, that could be used to shift the focus of the activity. I’d love to hear anyone’s suggestions of further questions.
Quadratic sequences rich tasks
danwalkerdanwalker

Quadratic sequences rich tasks

(0)
At least a lesson’s worth of activities on the theme of quadratic sequences. Designed to come after pupils have learnt the basics (how to use and find an nth term rule of a quadratic sequence). Gives pupils a chance to create their own examples and think mathematically. There are four activities included: Activity 1 - given sets of four numbers, pupils have to order them so that they form quadratic sequences. Designed to deepen pupils understanding that the terms in a quadratic sequences don’t necessarily always go up or down. Activities 2 and 3 - on the same theme of looking at the sequences you get when you pick and order three numbers of choice. Can you always create a quadratic sequence in this way? What if you had four numbers? Could be used to link to quadratic functions. Activity 4 - inverting the last activity, can pupils find possible values for the first three terms and a rule, given the fourth term? A chance for pupils to generate their own examples and possibly do some solving of equations in more than one variable. Where applicable, worked answers provided.
Sine rule problem problem solving
danwalkerdanwalker

Sine rule problem problem solving

(0)
A complete lesson of more challenging problems involving the sine rule. Designed to come after pupils have spent time on basic questions. Mistake on previous version now corrected - please contact me for an updated copy if you have already purchased this. Activities included: Starter: A set of six questions, each giving different combinations of angles and sides. Pupils have to decide which questions can be done with the sine rule. In fact they all can, the point being that questions aren’t always presented in the basic ‘opposite pairs’ format. Pupils can then answer these questions, to check they can correctly apply the sine rule. Main: A set of eight more challenging questions that pupils could work on in pairs. Each one is unique, with no examples offered, and therefore I’d class this as a problem solving lesson - pupils may need to adopt a general approach of working out what they can at first, and seeing where this takes them. Questions also require knowledge from other topics including angle rules, shape properties, bearings, and the sine graph. I’ve provided full worked answers FYI, but I would get pupils discussing answers and presenting to the class. Plenary: A prompt for pupils to reflect on possible rounding errors. Most of the questions have several steps, so it is worth getting pupils to think about how to avoid rounding errors. I’ve left each question as a full slide, but I’d print them 4-on-1 and 2-sided, so that you’d only need to print one worksheet per pair. Please review if you buy as any feedback is appreciated!
Trigonometry collect a joke
danwalkerdanwalker

Trigonometry collect a joke

(3)
Pupils work out answers to questions on a mixture of SOHCAHTOA, sine rule, consine rule and Pythagoras’s theorem to reveal a fairly rubbish joke (although I quite like it).
Solving basic trigonometric equations beyond the range 0 to 360 degrees
danwalkerdanwalker

Solving basic trigonometric equations beyond the range 0 to 360 degrees

(0)
A complete lesson on solving equations of the form sinx = a, asinx = b and asinx + b = 0 (or using cos or tan) for any range. Designed to come after pupils have spent time solving equations in the range 0 to 360 degrees, and are also familiar with the cyclic nature of the trigonometric functions. See my other resources for lessons on these topics. I made this to use with my further maths gcse group, but could also be used with an A-level class. Activities included: Stater: A set of 4 questions to test if pupils can solve trigonometric equations in the range 0 to 360 degrees. Main: A visual prompt to consider solutions beyond 360 degrees. followed by a second example (see cover image) that will lead to a “dead-end” for pupils. Slides to define principal values for sine, cosine and tangent, followed by a summary of how to solve equations for any range. Three example problem pairs to model methods and then get pupils trying. Includes graphical representations to help pupils understand. A worksheet with a progression in difficulty and a challenging extension to create equations with a required number of solutions. Plenary: A prompt to discuss solutions to the extension task.
Circle theorems lesson 1
danwalkerdanwalker

Circle theorems lesson 1

(1)
A complete lesson on the theorem that the angle at the centre is twice the angle at the circumference. For me, this is definitely the first theorem to teach as it can be derived using ideas pupils have already covered. and then used to derive some of the other theorems. Please see my other resources for lessons on the other theorems. Activities included: Starter: A few basic questions to check pupils can find missing angles in triangles. Main: A short discovery activity where pupils split the classic diagram for this theorem into isosceles triangles (see cover image). If you think this could overload pupils, it could be skipped, although I think if they can’t cope with this activity, they’re not ready for circle theorems! A link to the mathspad free tool for this topic. I hope mathspad don’t mind me putting this link - I will remove it if they do. A large set of mini-whiteboard questions for pupils to try. These have been designed with a variation element as well as non-examples, to really make sure pupils think about the features of the diagrams. A worksheet for pupils to consolidate independently, with two possible extension tasks: (1) pupils creating their own examples and non-examples, (2) pupils attempting a proof of the theorem. Plenary: A final set of six diagrams, where pupils have to decide if the theorem applies. Printable worksheets and answers included. Please review if you buy as any feedback is appreciated!
Circle theorems lesson 4
danwalkerdanwalker

Circle theorems lesson 4

(0)
A complete lesson on the theorem that opposite angles in a cyclic quadrilateral sum to 180 degrees. Assumes that pupils have already met the theorems that the angle at the centre is twice the angle at the circumference, the angle in a semicircle is 90, and angles in the same segment are equal. See my other resources for lessons on these theorems. Activities included: Starter: Some basics recap questions on the theorems already covered. Main: An animation to define a cyclic quadrilateral, followed by a quick question for pupils, where they decide whether or not diagrams contain cyclic quadrilaterals. An example where the angle at the centre theorem is used to find an opposite angle in a cyclic quadrilateral, followed by a set of three similar questions for pupils to do. They are then guided to observe that the opposite angles sum to 180 degrees. A quick proof using a very similar method to the one pupils have just used. A set of 8 examples that could be used as questions for pupils to try and discuss. These have a progression in difficulty, with the later ones incorporating other angle rules. I’ve also thrown in a few non-examples. A worksheet of similar questions for pupils to consolidate, followed by a second worksheet with a slightly different style of question, where pupils work out if given quadrilaterals are cyclic. A related extension task, where pupils try to decide if certain shapes are always, sometimes or never cyclic. Plenary: A slide showing all four theorems so far, and a chance for pupils to reflect on these and see how the angle at the centre theorem can be used to prove all of the rest. Printable worksheets and answers included. Please review if you buy as any feedback is appreciated!
Gauss's formula
danwalkerdanwalker

Gauss's formula

(1)
A complete lesson on the theme of the formula for 1+2+3+…+n, looking at how the rule emerges in different scenarios. Activities included: Starter: A classic related puzzle - counting how many lines in a complete graph. After the initial prompt showing a decagon, two differing approaches to a solution are shown. These will help pupils make connections later in the lesson. This is followed by a prompt relating to the handshaking lemma, which is the same thing in a different guise. Pupils could investigate this in small groups. Main: A prompt for pupils to consider the question supposedly put to Gauss as a child - to work out 1+2+3+…+100. Gauss’s method is then shown, at which point pupils could try the same method to sum to a different total. The method is then generalised to obtain Gauss’s rule of n(n+1)/2, followed by a worksheet of related questions. These include some challenging questions requiring pupils to adapt Gauss’s method (eg to work out 2+4+6+…+100). Plenary: A final look at the sequence Gauss’s rule generates (the triangle numbers). Please review if you buy as any feedback is appreciated!
Angles in a quadrilateral
danwalkerdanwalker

Angles in a quadrilateral

(0)
A complete lesson on the interior angle sum of a quadrilateral. Requires pupils to know the interior angle sum of a triangle, and also know the angle properties of different quadrilaterals. Activities included: Starter: A few simple questions checking pupils can find missing angles in triangles. Main: A nice animation showing a smiley moving around the perimeter of a quadrilateral, turning through the interior angles until it gets back to where it started. It completes a full turn and so demonstrates the rule. This is followed up by instructions for pupils to try the same on a quadrilateral that they draw. Instructions for pupils to use their quadrilateral to do the more common method of marking the corners, cutting them out and arranging them to form a full turn. This is also animated nicely. Three example-problem pairs where pupils find missing angles. Three worksheets, with a progression in difficulty, for pupils to work through. The first has standard ‘find the missing angle’ questions. The second asks pupils to find missing angles, but then identify the quadrilateral according to its angle properties. The third is on a similar theme, but slightly harder (eg having been told a shape is a kite, work out the remaining angles given two of the angles). A nice extension task, where pupils are given two angles each in three quadrilateral and work out what shapes they could possibly be. Plenary: A look at a proof of the rule, by splitting quadrilaterals into two triangles. A prompt to consider what the sum of interior angles of a pentagon might be. Printable worksheets and answers included throughout. Please review if you buy as any feedback is appreciated!
Fractals
danwalkerdanwalker

Fractals

(8)
A brief insight into how fractals are created as well as examples in Maths, art and nature. Includes a spreadsheet to investigate. Requires a basic understanding of complex numbers to fully appreciate.
Calculator poster
danwalkerdanwalker

Calculator poster

(0)
Are you bored of telling students what calculator to get for secondary school maths? Then use this poster!
Base arithmetic
danwalkerdanwalker

Base arithmetic

(3)
Looks at switching between different bases and the effect of base on arithmetic and divisibility tests.Plus an excel 'base switch&' calculator. A good enrichment task with a historical/real-life aspect, though probably best for more able pupils.